工业物联网场景下,数据是最重要的资源之一,企业需要对各种机器、设备和传感器产生的时序数据进行采集、存储与分析。上述场景对数据库提出了包括高可靠性、实时性、大规模、高并发、高精度、易扩展等在内的各种要求。同时,这些数据也带来了新的挑战,如数据安全、数据质量、数据管理等。
海量工业数据采集难:针对海量设备数据进行采集,且采集精度需达毫秒级,每秒钟可能产生上百万条数据;需具备足够的数据处理能力;此外还需考虑新增设备等更多场景
工业数据存储成本高:5-10 年长周期保存,存储成本大、负担重工业数据质量问题:由于工业物联网场景的特殊性,传感器易受环境噪声、温度变化、电磁干扰等因素影响,导致数据存在诸如缺失、异常、重复、乱序等严重问题
工业系统对数据可靠性及实时分析有着更高诉求:工业物联网系统对数据的可靠性和稳定性有着极高的要求,同时工业物联网场景数据需要实时处理和分析,以实现设备调度、预警系统等功能;
1、KaiwuDB 提供了面向海量时序数据的高速、高吞吐写入,并结合就地计算、流计算、预计算、集群部署等技术,支撑超速聚合查询分析,服务各种工业软件、大数据平台、物联网平台以及数据中台建设
2、KDP(数据服务平台)适配各种协议,实现对异构数据源的采集;同时,KDP 对数据进行多维度、深层次的探索分析,广泛应用在生产调度、设备管理、经营分析、预测分析、数据可视化呈现等诸多业务环节,提供多样的数据支撑服务
KaiwuDB 支持毫秒级数据快速入库,单节点每秒百万级,通过“就地计算”重点技术,能极大提升数据读写性能;支持多种聚合查询,针对千万级数据可实现毫秒级的响应;
KaiwuDB 具备10-100倍的数据压缩能力,完善的数据生命周期管理及降采样查询能力可将存储成本降低 90%,支持多模,可实现一套数据库应对多种数据存储和计算场景,构建统一数据共享存储;云边端一体化建设,降低系统的复杂度和冗余度,降低系统建设和人工成本;
可大幅提升了企业精细化生产的能力、风险预警即时性、设备运维管理水平、设备利用率及质量监测效果,通过流式计算及数据分析能力,将脏数据、乱序数据进行清理和调整,提升数据质量,方便后续用于数据建模分析、机器学习、AI 训练等场景;
通过数据库运维权限管理、加密通信、数据加密等技术充分保障数据安全;
支持高可用架构,实现数据库层面的高可用和灾备;
面对工业行业各地数据打通难的问题,KaiwuDB 可提供集群部署方案,提供数据同步、数据订阅模块、标准的 JDBC/ODBC 接入方式和 Restful API 接口,赋予企业数据中台搭建能力,让数据实现“统一汇聚、统一分析、统一治理”,避免数据割裂、数据指标不一致、数据能力重复建设等问题,助力企业可视化呈现数据实时分析结果,协助打造透明化工厂。